If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-33x+122=0
a = 1; b = -33; c = +122;
Δ = b2-4ac
Δ = -332-4·1·122
Δ = 601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-\sqrt{601}}{2*1}=\frac{33-\sqrt{601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+\sqrt{601}}{2*1}=\frac{33+\sqrt{601}}{2} $
| 6w+10=52 | | X+22x=35 | | -6(1-v)=v+29 | | 144w^2-169=0 | | 1x-x=-20 | | 22/10=3/x | | -3(n-8)+2n=8n-12 | | K-4=k-5+1 | | -7(x-2)=5(x+15) | | -8+2v=1+5v | | 4d-7=25/5 | | -44x=10-18x | | 7x-77=3x+53 | | 3m-7=-7+3m | | 7x-77=x-7 | | 1+v=7+v | | 63=-10x-127 | | 2(2m+3)-2m=4(m+10) | | 2(3x-50=44 | | 5(x+4)+3(x+2)=2(15-x) | | 3-8a+a=a-5 | | 5(x+4)x+3(x+2)=2(15-x | | -2(5x+2)=36 | | (2p-5)=(7p-8) | | -13-6n+5n=n-5 | | 1-3n=-9-5n | | 5(x+1)=2(x+3)+1 | | 2d+12=12 | | 6+v=3v+7-2v | | -12-(7+5x)=8 | | -7x-10x+(-9)=1 | | 7(x+2)+1=3(x+5)+5 |